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Abgract

We investigate the use of dimensionality reduction to
improve performance for a new class of data analysis
software called “recommender systerhs
Recommender systems applyokvledge discovery
techniqgues to the problem of making product
recommendations during a live customer interaction.
These systems are achieving widespread success in
E-commerce nowadays, especially with the advent of
the Internet. The tremendous growth afsiomers
and products poses three key challenges for
recommender systems in thecEmmerce domain.
These are: producing high quality recommendations,
performing many recommendations per second for
millions of customers and products, and achieving
high coveage in the face of data sparsity. One
successful recommender system technology is
collaborative filtering which works by matching
customer preferences to other customers in making
recommendations. Collaborative filtering has been
shown to produce highuality recommendations, but
the performance degrades with the number of
customers and products. New recommender system
technologies are needed that can quickly produce
high quality recommendations, even for very large
scale problems.

This paper presents/o different experiments where
we have explored one technology call8ahgular
Value Decomposition (SVD)to reduce the
dimensionality of recommender system databases.
Each experiment compares the quality of a
recommender system using SVD with the quatita
recommender system using collaborative filtering.
The first experiment compares the effectiveness of
the two recommender systems at predicting consumer
preferences based on a database of explicit ratings of
products. The second experiment compares th
effectiveness of the two recommender systems at
producingTop-N lists based on a relife customer
purchase database from arCBmmerce site. Our

experience suggests that SVD has the potential to
meet many of the challenges of recommender
systems, undegertain conditions.

1 Introduction

Recommender systelmave evolved in the extremely
interactive environment of the Web. They apply data
analysis techniques to the problem of helping
customers find which products they would like to
purchase at EEommece sites. For instance, a
recommender system on Amazon.com
(www.amazon.com suggests books to customers
based on other books the customers have told
Amazon they like. Another recommender system on
CDnow (www.cdnow.com helps customers choose
CDs to purchase as gifts, based on other CDs the
recipient has liked in the past. In a sense,
recommender systems are an application of a
particular type of Knowledge Discovery in Databases
(KDD) (Fayyad et al. 1996) technique. KDD
systems use many subtle data analysis techniques to
achieve two unsubtle goals. They aip:to save
money by discovering thpotential for efficiencies,

or ii) to make more money by discovering ways to
sell more prodcts to customers. For instance,
companies are using KDD to discover which
products sell well at which times of year, so they can
manage their retail store inventory more efficiently,
potentially saving millions of dollars a year
(Brachman et al. 1996). tker companies are using
KDD to discover which customers will be most
interested in a special offer, reducing the costs of
direct mail or outbound telephone campaigns by
hundreds of thousands of dollars a vyear
(Bhattacharyya 1998, Ling et al. 1998). These
applications typically involve using KDD to discover
a new model, and having an analyst apply the model
to the application. However, the most direct benefit
of KDD to businesses is increasing sales of existing
products by matching customers to the prositicey

will be most likely to purchase. The Web presents




new opportunities for KDD, but challenges KDD
systems to perform interactively. While a customer
is at the ECommerce site, the recommender system
must learn from the customsrbehavior, develop a
model of that behavior, and apply that model to
recommend products to the customer. Recommender
systems directly realize this benefit of KDD systems
in E-Commerce. They help consumers find the
products they wish to buy at the@®mmerce site.
Collaborative filtering is the most successful
recommender system technology to date, and is used
in many of the most successful recommender systems
on the Web, including those at Amazon.com and
CDnow.com.

The earliest implementations of collaborative
filtering, in systems such as Tapestry (Goldberg et
al., 1992), relied on the opinions of people from a
closeknit community, such as an office workgroup.
However, collaborative filtering for large

correlation between the opinions of the users. These
are callednearestneighbor techniques. Figure 1
depicts the neighborhood formation using a nearest
neighbor technique in a very simple two dimensional
space. Notice that eacheus neighborhood is those
other users who are most similar to him, as identified
by the proximity measure. Neighborhoods need not
be symmetric. Each user has the best neighborhood
for him. Once a neighborhood of users is found,
particular products canebevaluated by forming a
weighted composite of the neighbomspinions of
that document.

These statistical approaches, known aagomated
collaborative filtering typically rely uponratings as
numerical expressions of user preference. Several
ratingsbaed automated collaborative filtering
systems have been developed. The GrouplLens
Research system (Resnick et al. 1994) provides a
pseudonymous collaborative filtering solution for

Figure 1: lllustration of the neighborhood formation process. The distance betwe
target user and every other user is computed e closesk users are chosen as

neighbors (for this diagram k = 5).

communities cannot depend on each person knowing
the others. Sevdraystems use statistical techniques
to provide personal recommendations of documents
by finding a group of other users, known as
neighborsthat have a history of agreeing with the
target user. Usually, neighborhoods are formed by

Usenet news and movieRingo (Shardanand et al.
1995) anadvideo Recommend@Hill et al. 1995) are
email and web systems that generate
recommendations on music and movies respectively.
Here we present the schematic diagram of the
architecture of the GroupLens Research collaborative
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Web interface. The Web server software
communicates with the recommender system to
choose products to suggest to the user. The
recommender system, in this case a collaborative
filtering system, uses its database of ratings of
products to form nghborhoods and make
recommendations. The Web server software displays
the recommended products to the user.

The largest Web sites operate at a scale that stresses

the direct implementation of collaborative filtering.
Modelbased techniques (Fayyad et, 41996) have
the potential to contribute to recommender systems
that can operate at the scale of these sites. However,
these techniques must be adapted to thetiraal
needs of the Web, and they must be tested in realistic
problems derived from Web agse patterns. The
present paper describes our experimental results in
applying a modebased technique, Latent Semantic
Indexing (LSI), that uses a dimensionality reduction
technique, Singular Value Decomposition (SVD), to
our recommender system. We us® tdata sets in
our experiments to test the performance of the model
based technique: a movie dataset and-eonemerce
dataset.

The contributions of this paper are:

1. The details of how one modbhsed
technology, LSI/SVD, was applied to
reduce dimensiondji in recommender
systems for generating predictions.

2. Using low dimensional representation
to compute neighborhood for generating
recommendations.

3. The results of our experiments with
LSI/SVD on two test data setsour
MovieLens tesbed and customer
productpurchase datérom a large E
commerce company, which has asked to
remain anonymous.

The rest of the paper is organized as follows. The
next section describes some potential problems
associated with correlatidmased collaborative
filtering models. Section 3 explores the possibilities
of leveraging the latent semantic relationship in
customesproduct matrix as a basis for prediction
generation. At the same time it explains how we can
take the advantage of reduced dimensionality to form
better neighborhood of customers. The section
following that delineates our experimental tesd,
experimental design, results and discussion about the
improvement in quality and performance. Section 5

concludes the paper and provides directions for future
research.

2 Exiging  Recommender
Approachesand their Limitations

Sysgems

Most collaborative filtering based recommender
systems build a neighborhood of likeminded
customers. The Neighborhood formation scheme
usually uses Pearson correlation or cosine similarity
as a measure of proximity (Shardanand et &519
Resnick et al. 1994). Once these systems determine
the proximity neighborhood they produce two types
of recommendations.

1. Predictionof how much a customé will like a
product P. In case of correlation based
algorithm, prediction on product'P for
customer ‘C’ is computed by computing a
weighted sum of coated items betwee@ and
all his neighbors and then by addi@ts average
rating to that. This can be expressed by the
following formula (Resnick et al., 1994):

z JDrates(JP B j)rCJ
ZJ |rCJ|

Here,rc; denotes the correlation between user
and neighboid. Jp is J's ratings on producP.

J andC areJ and C's average ratings. The
prediction is personalized for the custonr
There are, however, some naiveon
personalized  prediction schemes  where
prediction, for example, is computed simply by
taking the average ratings of items being
predicted over all users (Herlocker et al., 1999).
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2. Recommendatiorof a list of products for a
customerC. This is commonly known atop-N
recommendation. Once a neighborhood is
formed, the recommender system algorithm
focuses on the products rated by the neighbors
and selects a list dfl products that will be liked
by the customer.

These systems have been successful in several
domains, but the algorithm ieported to have shown
some limitations, such as:

e Sparsity Nearest neighbor algorithms rely upon
exact matches that cause the algorithms to
sacrifice recommender system coverage and
accuracy (Konstan et al., 1997. Sarwar et al.,
1998). In particular, site the correlation
coefficient is only defined between customers
who have rated at least two products in common,



many pairs of customers have no correlation at
all (Billsus et al., 1998). In practice, many
commercial recommender systems are used to
evalude large product sets (e.g., Amazon.com
recommends books and CDnow recommends
music albums). In these systems, even active
customers may have rated well under 1% of the
products (1% of 2 million books is 20,000
books-a large set on which to have an opimi
Accordingly, Pearson nearest neighbor
algorithms may be unable to make many product
recommendations for a particular user. This
problem is known aseduced coverageand is
due to sparse ratings of neighbors. Furthermore,
the accuracy of recommendats may be poor
because fairly little ratings data can be included.
An example of a missed opportunity for quality
is the loss of neighbor transitivity. If customers
Paul and Sue correlate highly, and Sue also
correlates highly with Mike, it is not nessarily
true that Paul and Mike will correlate. They may
have too few ratings in common or may even
show a negative correlation due to a small
number of unusual ratings in common.

» Scalability Nearest neighbor algorithms require
computation that grows Wi both the number of
customers and the number of products. With
millions of customers and products, a typical

webbased recommender system running
existing algorithms will suffer serious scalability
problems.

*  Synonymyin real life scenario, differentrpduct
names can refer to the similar objects.
Correlation based recommender systems can't
find this latent association and treat these
products differently. For example, let us consider
two customers one of them rates 10 different
recycled letter padproducts as "high" and
another customer rates 10 differergcycled
memo padproducts "high". Correlation based
recommender systems would see no match
between product sets to compute correlation and
would be wunable to discover the latent
association that botbf them likerecycled office
products.

3 Applying SVD for Collaborative Filtering

The weakness of Pearson nearest neighbor for large,
sparse databases led us to explore alternative
recommender system algorithms. Our first approach
attempted to bridg the sparsity by incorporating
semiintelligent filtering agents into the system
(Sarwar et al., 1998, Good et al., 1999). These agents

evaluated and rated each product, using syntactic
features. By providing a dense ratings set, they
helped alleviate cgerage and improved quality. The
filtering agent solution, however, did not address the
fundamental problem of poor relationships among
like-minded but sparsmting customers. We
recognized that the KDD research community had
extensive experience learnifrgm sparse databases.
After reviewing several KDD techniques, we decided
to try applying Latent Semantic Indexing (LSI) to
reduce the dimensionality of our custorpeoduct
ratings matrix.

LSl is a dimensionality reduction technique that has
been wide} used in information retrieval (IR) to
solve the problems ofsynonymyand polysemy
(Deerwester et al. 1990). Given a tedlocument
frequency matrix, LSI is used to construct two
matrices of reduced dimensionality. In essence, these
matrices represent tent attributes of terms, as
reflected by their occurrence in documents, and of
documents, as reflected by the terms that occur
within them. We are trying to capture the
relationships among pairs of customers based on
ratings of products. By reducing tldémensionality

of the product space, we can increase density and
thereby find more ratings. Discovery of latent
relationship from the database may potentially solve
the synonymy problem in recommender systems.
LSI, which uses singular value decompositianita
underlying matrix factorization algorithm, maps
nicely into the collaborative filtering recommender
algorithm challenge. Berry et al. (1995) point out that
the reduced orthogonal dimensions resulting from
SVD are less noisy than the original data eapture

the latent associations between the terms and
documents. Earlier work (Billsus et al. 1998) took
advantage of this semantic property to reduce the
dimensionality of feature space. The reduced feature
space was used to train a neural networketoegate
predictions. The rest of this section presents the
construction of SVEbased recommender algorithm
for the purpose of generating predictions &ogtN
recommendationsthe following section describes
our experimental setup, evaluation metrics, and
results.

3.1 Singular Value Decomposition (SVD)

SVD is a wellknown matrix factorization technique
that factors am x n matrix R into three matrices as
the following:

R=UI[SIV'

Where,U andV aretwo orthogonal matrices of size
m xr and n xr respectively;r is the rank of the



matrix R. Sis a diagonal matrix of sizex r having

all singular values of matriR as its diagonal entries.
All the entries of matridXS are positive and stored in
decreasing order of their magnitude. The matrices
obtained by performip SVD are particularly useful
for our application because of the property that SVD
provides the best lower rank approximations of the
original matrixR, in terms of Frobenius norm. It is
possible to reduce thex r matrix S to have onlyk
largest diagonalalues to obtain a matr&, k <r. If

the matricedJ andV are reduced accordingly, then
the reconstructed matriR, = U,.S.V( is the closest
rank-k matrix toR. In other wordsR, minimizes the
Frobenius normMR R{| over all rank matrices.

We use SVD in recommender systems to perform
two different tasks: First, we use SVD to capture
latent relationships between customers and products
that allow us to compute the predicted likeliness of a
certain product by a customer. Second, we use SVD
to prodice alow-dimensionalrepresentation of the
original customeproduct space and then compute
neighborhood in the reduced space. We then used
that to generate a list oftopN product
recommendations for customers. The following is a
description of our expanents.

3.1.1 Prediction Generation

We start with a customegaroduct ratings matrix that

is very sparse, we call this matrR To capture
meaningful latent relationship we first removed
sparsity by filling our customesroduct ratings
matrix. We tried tw different approaches: using the
average ratings for a customer and using the average
ratings for a product. We found the product average
produce a better result. We also considered two
normalization techniques: conversion of ratings-to z
scores and stitaction of customer average from each
rating. We found the latter approach to provide
better results. After normalization we obtain a filled,
normalized matriR,om EssentiallyRnorm = R+NPR,
whereNPR is the filkrin matrix that providesaive
nonpersonalized recommendationVe factor the
matrix R,orm @and obtain dow-rank approximation
after applying the following steps described in
(Deerwester et al. 1990):

. factor Ryorm Using SVD to obtaitJ, SandV.

. reduce the matrix S to dimensikn

. compute the guareroot of the reduced
matrix S, to obtainS}?

. compute two resultant matriced;S*? and
S(llzvk'

These resultant matrices can now be used to compute
the recommendation score for any customeand
productp. We observehat the dimension dfj, S

is m x k and the dimension &>, isk xn. To
compute the prediction we simply calculate the dot
product of thec™ row of U,SM and thep™ column of
SYV,/ and add the customer average back using the
following:

Cr,. =C+U S, ©TAS.Y, (P).

pred
Note tha even though th&,,.,, matrix is dense, the
special structure of the matriXPRallows us to use
sparse SVD algorithms e(g., Lanczos) whose
complexity is almost linear to the number of non
zeros in the original matrik.

3.1.2 Recommendation generation

In our second experiment, we look into the prospects
of using lowdimensional space as a basis for
neighborhood formation and using the neighbors
opinions on products they purchased we recommend
a list of N products for a given customer. For this
purposewe consider customer preference data as
binary by treating each netero entry of the
customeiproduct matrix as1". This means that we
are only interested in whether a customer consumed a
particular product but not how much he/she liked that
product.

Neighborhood formation in the reduced space:

The fact that the reduced dimensional representation
of the original space is less sparse than its -high
dimensional counterpart led us to form the
neighborhood in that space. As before, we started
with the originalcustomeiproduct matriA, and then
used SVD to produce three decomposed mattites
S, and V. We then reduced by retaining onlyk
eigenvalues and obtaine8. Accordingly, we
performed dimensionality reduction to obt&ip and

Vi Like the previous mthod, we finally computed
the matrix product),SM%. Thism x k matrix is thek
dimensional representation of customers. We then
performed vector similarity (cosine similarity) to
form the neighborhood in that reduced space.

Top-N Recommendation generation:

Once the neighborhood is formed we concentrate on
the reighbors of a given customer and analyze the
products they purchased to recomméhgbroducts
the target customer is most likely to purchase. After
computing the neighborhood for a given custo@er
we scan through the purchase record of each df the
neighbors and perform a frequency count on the



products they purchased. The product list is then
sorted and most frequently purchagedtems are

returned as recommendations for the target customer.

We call this scheme most item

recommendation.

frequent

3.1.3 Sensitivity of Number of Dimensions k

The optimal choice of the valdeis critical to high
quality prediction generation. We are interested in a
value of k that is large enough to capture all the
important structures in the matrix yet small enough to
avdd overfitting errors. We experimentally find a
good value ok by trying several different values

3.1.4 Performance Implications

In practice, ecommerce sites like amazon.com
experiences tremendous amount of customer visits
per day. Recommending products these large
number of customers in re@me requires the
underlying recommendation engine to be highly
scalable. Recommendation algorithms usually divide
the prediction generation algorithm into two parts:
offline componentand online componentOffline
component is the portion of the algorithm that
requires an enormous amount of computation e.g.,
the computation of customeustomer correlation in
case of correlatiobbased algorithm. Online
component is the portion of the algorithm that is
dynamically computed to provide predictions to
customers using data from stored offline component.
In case of SVEbased recommendation generation,
the decomposition of the custorrmoduct matrix
and computing the reduced user and item matrices
i.e.,USMandSMV,/ can be done offline.

Offline computation is not very critical to the
performance of the recommender system. But there
are some issues with the memory and secondary

storage requirement that need to be addressed. In case

of SVD, the offline componentequires more time
compared to the correlatidrased algorithm. For an
m x n matrix the SVD decomposition requires a time
in the order ofO((m+n)’) (Deerwester et. al., 1990).
Computation of correlation tak€{n?.n). In terms of
storage, however, SVD imore efficient, we need to
store just two reduced customer and product matrices
of size m xk and k xn respectively, a total of
O(m+n), since k is constant But in case of the
correlationbasedCF algorithm, @ m x m all-to-all
correlation table must be stdrerequiring O(n?)
storage, which can be substantially large with
millions of customers and products.

So, we observe that as a result of dimensionality
reduction SVD based online performance is much

better than correlation based algorithms. For the same
reason, neighborhood formation is also much faster
when done in low dimensional space.

4 Experiments

4.1 Experimental Platform

4.1.1 Data sets

As mentioned before we report two different
experiments. In the first experiment we used data
from our MovieLens @commender system to
evallate the effectiveness of our SMidsed
prediction generation algorithm. MovieLens
(www.movielens.umn.eduis a webbased research
recommender system that debuted in Fall 1997. Each
week hundredsf users visit MovieLens to rate and
receive recommendations for movies. The site now
has over 35000 users who have expressed opinions
on 3000+ different moviesWe randomly selected
enough users to obtain 100,000 ratregords from

the database (we ongpnsidered users that had rated
twenty or more movies). Ratingcord in this context

is defined to be a tripletcustomer, product, rating>

We divided the ratingecords into training set and a
test set according to different ratios. We call this
training ratio and denote it by. A value ofx=0.3
indicates that we divide the 100,000 ratings data set
into 30,000 train cases and 70,000 test cases. The
training data was converted into a usgvie matrix

R that had 943 rows (i.e., 943 users) and 1682
columns (i.e., 1682 movies that were rated by at least
one of the users). Each entry represented the
rating (from 1 to 5) of thé" user on th¢" movie.

The second experiment is designed to test the
effectiveness of “neighborhood formed in low
dimersional space In addition to the above movie
data, we usthistorical catalog purchase data from a
large ecommerce company. This data set contains
purchase information of 6,502 users on 23,554
catalog items. In total, this data set contains 97,045
purchag records. In case of the commerce data set,
each record is a tripletcustomer, product, purchase
amount>. Since, purchase amount ¢&anbe
meaningfully converted to user rating, we didimse

the second data set for prediction experiment. We

1 In additon to MovieLens' users, the system includes over
two million ratings from more than 45,000 EachMovie
users. The EachMovie data is based on a static collection
made available for research by Digital Equipment
Corporation's Systems Research Center.



converted allpurchase amounts td” to make the
data set binary and then used it for recommendation
experiment. As before, we divided the data set into a
train set and a test set by using similar notion of
training ratio x.

4.1.2 Benchmark recommender systems

To canpare the performance of SMWiased
prediction we also entered the training ratings set into
a collaborative filtering recommendation engine that
employs the Pearson nearest neighbor algorithm. For
this purpose we implement&ck-Predict, a flexible
recommedation engine that implements
collaborative filtering algorithms using C. We tuned
CF-Predict to use the best published Pearson nearest
neighbor algorithm and configured it to deliver the
highest quality prediction without concern for
performance (i.e., itconsidered every possible
neighbor to form optimal neighborhoods). To
compare the quality of SVD neighborhebdsed
recommendations, we implemented another
recommender system that usassinesimilarity in
high dimensional space to form neighborhood and
returns top-N recommendations, we call ICF-
RecommendWe used cosine measure for building
neighborhood in both cases because in the low
dimensional space proximity is measured only by
computing the cosine.

For each of the ratings in the test data set, we
requested a predictiofrom CFPredict and also
computed the same predictidnom the matrices
USHandSHV and compared ther@imilarly, we
compared twaop-N recommendatiomalgorithms

4.2 Evaluation Metrics

Recommender systems research has used several

types of measures for evaluating theceess of a
recommender system. We only consider the quality
of prediction or recommendation, as we're only
interested in the output of a recommender system for
the evaluation purpose. It is, however, possible to
evaluate intermediate steps (e.g., the iguabf
neighborhood formation). Here we discuss two types
of metrics for evaluating predictions andp-N
recommendations respectively.

4.2.1 Prediction evaluation metrics

To evaluate an individual item prediction researchers
use the following metrics:

» Coverage metrics evaluate the number of
products for which the system could provide
recommendations. Overall coverage is

computed as the percentage of custepreduct
pairs for which a recommendation can be made.

= Statistical accuracy metrics evaludie aiccuracy
of a system by comparing the numerical
recommendation scores against the actual
customer ratings for the custorm@oduct pairs
in the test dataseMean Absolute Error (MAE),
Root Mean Squared Error (RMSEplnd
Correlation between ratings angredictions are
widely used metrics. Our experience has shown
that these metrics typically track each other
closely.

» Decision support accuragyetrics evaluate how
effective a prediction engine is at helping a user
select highquality products from the sef all
products. These metrics assume the prediction
process as a binary operatiemither products
are predicted (good) or not (bad). With this
observation, whether a product has a prediction
score of 1.5 or 2.5 on a fiymint scale is
irrelevant if he customer only chooses to
consider predictions of 4 or higher. The most
commonly used decision support accuracy
metrics arereversal rate weighted errorsand
ROC sensitivitfLe et al., 1995)

We used MAE as our choice of evaluation metric to
report pediction experiments because it is most
commonly used and easiest to interpret directly. In
our previous experiments (Sarwar et al., 1999) we
have seen that MAE and ROC provide the same
ordering of different experimental schemes in terms
of prediction quaty.

4.2.2 Recommendation evaluation metrics

To evaluatetop-N recommendation we use two
metrics widely used in the information retrieval (IR)
community namely recall and precision. However,
we slightly modify the definition of recall and
precision & our experiment is different from standard
IR. We divide the products into two sets: testset
andtop-N set. Products that appear in both sets are
members of thenit set. We now define recall and
precision as the following:

= Recall in the context of he recommender
system is defined as:

size of Hiset _ |tesﬂtop |\4
size of tet set ftest
= Precision is defined as:

Recall=

size of Hiset _ ‘tesﬂtopM

PrecisiorF — =
size of tpN set N




These two measures are, however, often conflicting
in nature. For instance, increasing the numNer
tends to increase recall but decreases precision. The
fact that both are critical for the glity judgement
leads us to use a combination of the two. In
particular, we use the standard F1 metric (Yang et.
al., 1999) that gives equal weight to them both and is
computed as follows:

_ 2[ RecallC Precsion

~ (Recall+ Precision)

We compute F1 for each individual customer and
calculate the avege value to use as our metric.

4.3 Experimental Steps

4.3.1 Prediction Experiment.

Each entry in our data matrfkrepresents a rating on
a 15 scale, except that in cases where the user
didn't rate moviej the entry 1 is null. We then
performed thedllowing experimental steps.

We computed the average ratings for each user and
for each movie and filled the null entries in the
matrix by replacing each null entry with the column
average for the corresponding column. Then we
normalized all entries irhe matrix by replacing each
entryr;jwith (ri; - r; ), where r; is the row average of
thei™ row. Then MATLAB was used to compute the
SVD of the filed and normalized matribR,
producing the three SVD component matritgsS
and V'. S is the matrix that contains the singular
values of matrixR sorted in decreasing ord&. was
computed fronS by retaining onhyk largest singular
values and replacing the rest of the singular with 0.
We computed the square root of the reducedrix
and computed the matrix produtigSM? and SYA'

as mentioned above. Ween multipliedthe matrices

U S andSYV' producing a 943 x 1682 matyiR.
Since the inner product of a row frothS*?and a
column fromSY4, gives us a predictioscore,each

+—x=0.2
—=—x=0.5
——x=0.8

SVD prediction quality variation with number of dimension
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Mean absolute error
g/ ’

° ® u ©» 1B 1

number of dimension, k
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entryp; of this resultant matrif holds the prediction
score for each usenovie pairi,j. We then de
normalizel the matrix entries by adding the user
avergle back into each predictimtores and loaded
the training set ratings intGF-Predict and request
prediction scores on each dhe test set ratings.
Computed MAE ofthe SVD and theCF-Predict
predictionscores and compare the two sets of results.

We repeated the entire processker 2, 521, 25, 50
and 100, and found 14 to be the most optimum value
(Figure 3(a)).We then fxed k at 14 and varied the
train/test ratioc from 0.2 to 0.95 with an increment of
0.05 and for each point we run the experiment 10
times each time choosing different training/test sets
and take the average to generate the phse that

the overall pdormance of the SVEbased prediction
algorithm does significantly change for a wide range
of values ok.

4.3.2 Top-N recommendation experiment:

We started with a matrix as the previous experiment
but converted the rating entries (i.e., fr@r0 entries)

to "1". Then we producedtop-10 product
recommendations for each customer based on the
following two schemes:

= High dimensional neighborhood: In this scheme
we built the customer neighborhood in the
original customeproduct space and us&dost
frequent itentecommendation to produtep-10
product list. We then used our F1 metric to
evaluate the quality.

= Low dimensional neighborhood: We first reduce
the dimensionality of the original space by
applying SVD and then used) S** (i.e.,
representation of custongerin k dimensional
space) matrix to build the neighborhood. As
before we used most frequent item
recommendation to produceop-10 list and
evaluated by using F1 metric.

In this experiment our main focus was on the E

—0O— Pure-CF
—&— SVD

SVD as Prediction Generator
(k is fixed at 14 for SVD)
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Figure 3. (a) Determination of optimum value of k. (b) SVD v<Predict prediction quality



commerce data. We also report our firgdivhen we
apply this technique on our movie preference data.

4.4 Results

4.4 1Prediction experiment results

Figure 3(b) charts our results for the prediction
experiment. The data sets were obtained from the
same sample of 100,000 ratings, by varyingsizes

of the training and test data sets, (recall thestthe

determined the optimum ratio for both of our data
sets in high dimensional and low dimensional cases.
At first we run the high dimensiohaxperiment for
different x ratio and then we perform low
dimensional experiments for differertvalues for a
fixed dimension K) and compute the F1 metric.
Figure 4 shows our results, we observe that optimum
x values are 0.8 and 0.6 for the movie dad the E
commerce data respectively.

Once we obtain the best value, we run high
dimensional experiment for thatand compute F1

—o— ML High-dim
—o— ML Low-dim

Determination of the optimum x value
(Movie data set)

0.24
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0.2
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0.16
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F1 Metric

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

train ratio, x

—o— EC High-dim
—a— EC Low-dim

Determination of the optimum x value
(Commerce data set)
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0.12

0.1
0.08 -
0.06
0.04
0.02 A

F1 Metric

"
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Figure 4. Determination of the optimum value x. a) for the Movie data b) for the Commerce d

ratio between the size of the training set and the size
of the entire data set). Note that the different values
of x were used to determine the sensitivity of the

different schemes on the spity of the training set.

metric. Then we run our lodimensional
experiments for thax ratio, but vary the number of
dimension k. Our results ar@resented in figures 5
and 6. We represent the corresponding high
dimensional results (i.e., resus from CF

4.4.2 Top-N recommendation experiment recommenyl in the chart by drawing vertical lines at
results their corresponding values.
For the recommendation experiment, we first
Top-10 recommendation —o— ML Low-dim
(Movie data set) —a— ML High-dim
0.232
0.23 -
o 0.228 4
2 0.226 |
i
L 0224 =
<\High dimensional value at x = 0.8 -
0.222
0.22 ; ; ‘ ; ; ; ; ;
10 20 30 40 50 60 70 8 90 100
Dimension, k

Figure 5. To]-10 recommendatn results for the MovielLens data s



4.5 Discussion

In case of the prediction experiment, we observe that
in Figure 3(b) forx<0.5 SVD-based prediction is
better than the GPredict predictions. For>0.5,
however, the CHredict predictions are slightly
better. This suggests that neanesighbor based
collaborative filtering algorithms are susceptible to
data sparsity as the neighborhdodmation process

is hindered by the lack of enough training data. On
the other hand, SVD based prediction algorithms can
overcome the sparsity problem by utilizing the latent
relationships. However, as the training data is
increased both SVD and &#edct prediction
quality improve but the improvement in case of-CF
Predict surpasses the SVD improvement.

From the plots of the recommender results (Figures 5
and 6), we observe that for the movie data the best
result happens in the vicinity &-=20 and incase of

approximation of the original space. Also another
factor to consider is the amount of sparsity in the data
sets, the movie data is 95.4% sparse (100,000
nonzero entries in 943x1,682 matrix), while the e
commerce data is 99.996% sparse (97,045 nonzero
entries in 6,502x23,554 matrix). To test this
hypothesis we deliberately increased sparsity of our
movie data (i.e., amove nonzero entries) and
repeated the experiment and observed dramatic
reduction in F1 values!

Overall, the results are encouraging for the use of
SVD in collaborative filtering recommender systems.
The SVD algorithms fit well with the collaborative
filtering data, and they result in good quality
predictions. And SVD has potential to provide better
online performance than correlatibased systems.
In case of theop-10 recommendation experiment we
have seen even with a small fraction of dimension,
i.e, 20 out of 1682 in movie data, SMWiased

Top-10 recommendation
(Commerce data set)
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—a— EC High-dim

0.17
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Figure 6. To]-10 recommendation results for theCommercedata set.

the ecommerce data the recommendation quality
keeps on growing with increasing dimensions. The
movie experiment reveals that the low dimensional
results are better than the high dimensional
counterpart at all values d&. In case of the -e
commere experiment the high dimensional result is
always better, but as more and more dimensions are
added low dimensional values improve. However, we
increased the dimension values up to 700, but the low
dimensional values were still lower than the high
dimensonal value.Beyond 70 the entire process
becomes computationally very expensi@&nce the
commerce data is very high dimensional
(6502x23554), probably such a smhllalue (up to

700) is not sufficient to provide a useful

recommendation quality was Dbetter than
corresponding high dimensional scheme. It indicates
that neighborhoods formed in the reduced
dimensional space are better than their high
dimensional counterparts.

2 We're also working with experiments to use the reduced
dimensional neighborhood for prediction generation using
classical CF algorithm. So far, the results are encouraging.



5Concludons

Recommender systems are a powerful new
technology for extracting additional value for a
business from its customer databases. These systems
help customers find products they want to buy from a
business. Recommender systems benefit customers
by enabhg them to find products they like.
Conversely, they help the business by generating
more sales. Recommender systems are rapidly
becoming a crucial tool in-Eommerce on the Web.

Recommender systems are being stressed by the huge
volume of customer da in existing corporate
databases, and will be stressed even more by the
increasing volume of customer data available on the
Web. New technologies are needed that can
dramatically improve the scalability of recommender
systems.

Our study shows that Siotar Value Decomposition
(SVD) may be such a technology in some cases. We
tried several different approaches to using SVD for
generating recommendations and predictions, and
discovered one that can dramatically reduce the
dimension of the ratings matrixam a collaborative
filtering system. The SVibased approach was
consistently worse than traditional collaborative
filtering in se of an extremely sparsecemmerce
dataset. However, the SWiased approach
produced results that were better than a trawhtio
collaborative filtering algorithm some of the time in
the denser MovieLens data set. This technique leads
to very fast online performance, requiring just a few
simple arithmetic operations for each
recommendation. Computing the SVD is expensive,
but @an be done offline. Further research is needed to
understand how often a new SVD must be computed,
or whether the same quality can be achieved with
incremental SVD algorithms (Berry et. al., 1995).

Future work is required to understand exactly why
SVD wolks well for some recommender applications,
and less well for others. Also, there are many other
ways in which SVD could be applied to
recommender systems problems, including using
SVD for neighborhood selection, or using SVD to
create lowdimensional visalizations of the ratings
space.

6 Acknowledgements

Funding for this research was provided in part by the
National Science Foundation under grants IIS
9613960, IIS 9734442, and IS 9978717 with
additional funding by Net Perceptions Inc. This work

was ale supported by NSF CCB972519, by Army
Research Office contract DA/DAAGHEB-1-0441,

by the DOE ASCI program and by Army High
Performance Computing Research Center contract
number DAAH0495-C-0008. We thank anonymous
reviewers for their valuable comments.

References

=

Berry, M. W., Dumais, S. T., and Brian, G. W.

1995. “Using Linear Algebra for Intelligent
Information Retrievdl. SIAM Review, 37(4),

pp. 573595.

Billsus, D., and Pazzani, M. J. 199&.earning
Collaborative Information Filtets  In
Proceedigs of Recommender  Systems
Workshop. Tech. Report W$3-08, AAAI
Press.

N

Bhattacharyya, S. 1998!Direct Marketing
Response Models using Genetic Algorithirs.
Proceedings of the Fourth International
Conference on Knowledge Discovery and Data
Mining, pp. 44-148.

4. Brachman, R., J., Khabaza, T., Kloesgen, W.,
PiatetskyShapiro, G., and Simoudis, E. 1996.
“Mining Business DatabasésCommunications
of the ACM 39(11), pp. 4248, November.

Deerwester, S., Dumais, S. T., Furnas, G. W.,
Landauer, T. K., and Harstan, R. 1990.
“Indexing by Latent Semantic Analysis
Journal of the American Society for Information
Science41(6), pp. 39407.

6. Fayyad, U. M., Piatetskghapiro, G., Smyth, P.,
and Uthurusamy, R., Eds. 199&dvances in
Knowledge Discovery and DataiMng”. AAAI
press/MIT press

7. Goldberg, D., Nichols, D., Oki, B. M., and
Terry, D. 1992!Using Collaborative Filtering to
Weave an Information Tapestry
Communications of the ACNDecember.

8. Good, N., Schafer, B., Konstan, J., Borchers, A.,
Sarwar, B., Hrlocker, J., and Riedl, J. 1999.
"Combining Collaborative Filtering  With
Personal Agents for Better Recommendations.
In Proceedings of the AAA®9 conference, pp
439-446.

9. Heckerman, D. 1996:Bayesian Networks for
Knowledge Discovery. In Advances in
Knowledge Discovery and Data Miningayyad,
U. M., PiatetskyShapiro, G., Smyth, P., and
Uthurusamy, R., EA®AAI press/MIT press



10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

Herlocker, J., Konstan, J., Borchers, A., and
Riedl, J. 1999. "An Algorithmic Framework for
Performing  Collaborative  Filterqy" In
Proceedings of ACM SIGIR'99. ACM press.

Hill, W., Stead, L., Rosenstein, M., and Furnas,
G. 1995. “Recommending and Evaluating
Choices in a Virtual Community of Useln
Proceedings of CHI95.

Le, C. T., and Lindgren, B. R. 1995.
“Construction andComparison of Two Receiver
Operating Characteristics Curves Derived from
the Same SamplésBiom. J.37(7), pp. 86B77.

Ling, C. X., and Li C. 1998:Data Mining for
Direct Marketing: Problems and Solutiohdn
Proceedings of the 4th International Corgfiece
on Knowledge Discovery and Data Minjngp.
73-79.

Resnick, P., lacovou, N., Suchak, M., Bergstrom,
P., and Riedl, J. 1994GroupLens: An Open
Architecture for Collaborative Filtering of
Netnews. InProceedings of CSCV@4, Chapel
Hill, NC.

Sarwar B., M., Konstan, J. A., Borchers, A,
Herlocker, J., Miller, B., and Riedl|, J. 1998.
“Using Filtering Agents to Improve Prediction
Quality in the GroupLens Research
Collaborative Filtering Systernln Proceedings
of CSCW 98, Seattle, WA.

Sarwar, B.M., Knstan, J.A., Borchers, A., and
Riedl, J. 1999. "Applying Knowledge from KDD
to Recommender System3.&chnical Report TR

99-013, Dept. of Computer Science, University
of Minnesota.

Schafer, J. B., Konstan, J., and Riedl, J. 1999.
“Recommender Systems in-@G®mmercé€. In
Proceedings of ACM JEommerce 1999
conference

Shardanand, U., and Maes, P. 1995ocial
Information Filtering: Algorithms  for
Automating ‘Word of Mouth.” In Proceedings
of CHI’95. Denver, CO.

Yang, Y., and Liu, X. 1999. "A Rexamination
of Text Categorization Methods." Rroceedings
of ACM SIGIR'99 conferenpp 4249.

Zytkow, J. M. 1997.“Knowledge = Concepts: A
Harmful Equatiori. In Proceedings of the Third
International Conference on Knowledge
Discovery and Data Mining.



